Conessine Interferes with Oxidative Stress-Induced C2C12 Myoblast Cell Death through Inhibition of Autophagic Flux
نویسندگان
چکیده
Conessine, a steroidal alkaloid isolated from Holarrhena floribunda, has anti-malarial activity and interacts with the histamine H3 receptor. However, the cellular effects of conessine are poorly understood. Accordingly, we evaluated the involvement of conessine in the regulation of autophagy. We searched natural compounds that modulate autophagy, and conessine was identified as an inhibitor of autophagic flux. Conessine treatment induced the formation of autophagosomes, and p62, an autophagic adapter, accumulated in the autophagosomes. Reactive oxygen species such as hydrogen peroxide (H2O2) result in muscle cell death by inducing excessive autophagic flux. Treatment with conessine inhibited H2O2-induced autophagic flux in C2C12 myoblast cells and also interfered with cell death. Our results indicate that conessine has the potential effect to inhibit muscle cell death by interfering with autophagic flux.
منابع مشابه
Sargassum horneri methanol extract rescues C2C12 murine skeletal muscle cells from oxidative stress-induced cytotoxicity through Nrf2-mediated upregulation of heme oxygenase-1
BACKGROUND Sargassum horneri, an edible marine brown alga, is typically distributed along the coastal seas of Korea and Japan. Although several studies have demonstrated the anti-oxidative activity of this alga, the regulatory mechanisms have not yet been defined. The aim of the present study was to examine the cytoprotective effects of S. horneri against oxidative stress-induced cell damage in...
متن کاملInterplay of Oxidative Stress and Autophagy in PAMAM Dendrimers-Induced Neuronal Cell Death
Poly-amidoamine (PAMAM) dendrimers are proposed to be one of the most promising drug-delivery nanomaterials. However, the toxicity of PAMAM dendrimers on the central nervous system seriously hinders their medical applications. The relationship between oxidative stress and autophagy induced by PAMAM dendrimers, and its underlying mechanism remain confusing. In this study, we reported that PAMAM ...
متن کاملSchisandrae semen essential oil attenuates oxidative stress-induced cell damage in C2C12 murine skeletal muscle cells through Nrf2‑mediated upregulation of HO‑1.
The aim of the present study was to examine the cytoprotective effects of Schisandrae semen essential oil (SSeo), purified from Schisandrae fructus, against oxidative stress-induced cell damage in C2C12 myoblasts. SSeo attenuated hydrogen peroxide (H2O2)-induced growth inhibition and exhibited scavenging activity against the intracellular reactive oxygen species (ROS) that were induced by H2O2....
متن کاملResveratrol-enhanced autophagic flux ameliorates myocardial oxidative stress injury in diabetic mice
Autophagic dysfunction is observed in diabetes mellitus. Resveratrol has a beneficial effect on diabetic cardiomyopathy. Whether the resveratrol-induced improvement in cardiac function in diabetes is via regulating autophagy remains unclear. We investigated the mechanisms underlying resveratrol-mediated protection against heart failure in diabetic mice, with a focus on the role of sirtuin 1 (SI...
متن کاملFrom the Cover: Ethylmercury-Induced Oxidative and Endoplasmic Reticulum Stress-Mediated Autophagic Cell Death: Involvement of Autophagosome-Lysosome Fusion Arrest.
Ethylmercury (EtHg) is derived from the degradation of thimerosal, the most widely used organomercury compound. In this study, EtHg-induced toxicity and autophagy in the mouse kidney was observed and then the mechanism of toxicity was explored in vitro in HK-2 cells. Low doses of EtHg induced autophagy without causing any histopathological changes in mouse kidneys. However, mice treated with hi...
متن کامل